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[Outline] Chapter 4: Photodetectors and LEDs

Optoelectronics in the IT context

Optical properties of TMDCs
= Reflectance/absorbance
= Band structure
= Excitons — band gap, binding energy

= Tuning

Devices
= Photodetectors
= Electroluminescent devices



Optoelectronics and IT devices
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Visibility of TMDC monolayers

monolayer MoS,

Benameur et al., Nanotechnology (2011)



Visibility of TMDC monolayers — contrast maps
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Visibility of TMDC monolayers — contrast maps
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Band structure of 2H MoS,

Bulk MoS2
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Emerging Photoluminescence in Monolayer
MoS,

Andrea Splendiani,™¥ Liang Sun,” Yuanbo Zhangr,f Tianshu Li,% Jonghwan Kim, T
Chi-Yung Chim," Giulia Galli,® and Feng Wang*"™"

Splendiani...Wang; Nano Lett. (2010)
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Photoluminescence
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Photoluminescence
From a CVD-grown MoS,
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Excitons

1. Light in

NN\

2.eand h

3. exciton formation

4. Light emission
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Photoluminescence

Light emission as a result of light absorption
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Excitons
(4]
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Excitonic complexes

Exciton

Neutral exciton
XO
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Charged exciton
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Exciton molecule
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Electrostatic control of exciton charge in MoSe,

Ross et al, Nat Commun. (2013)

14



A, B, C of excitons

Kozawa...Eda; Nature Communications (2014)
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A, B, C of excitons

Spectrophotometer

Absorbance (a.u.)

0.124

0.10+

0.08+

0.06-

0.04+

0.02+

0.00-

20 25 3.0 35 40 45
Energy (eV)

Large-area CVD MoS,

Dumcenco...Kis; arXiv:1405.0129
Dumcenco...Kis; ACS Nano (2015)

5.0

16



Band gap tuning with strain
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Band gap tuning by alloying

For llI-V and II-VI materials
= As long as the lattice type stays the same, composition can be tuned continuously
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Band gap tuning by alloying

For TMDCs

Li et al. J. Am. Chem. Soc. (2014)
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Band gap and exciton binding energy tuning

Dielectric constant of the environment affect the band gap E; and exciton binding
energy Ep
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Phototransistors/photodetectors
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Early graphene and MoS, photodetectors
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Early graphene and MoS, photodetectors
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Sensitive MoS, photodetectors
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Sensitive MoS, photodetectors
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Drain Current ls (LA)
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Photocurrent dynamics
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From Ch. 2: most common point defects in MoS,

Zhou et al. Nano Letters (2013)
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Mechanisms of photoconductivity
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Photonic circuit integration
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Integrated photodetectors
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[Overview] Electroluminescent devices
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Lateral junction LEDs

Ross et al. Nat Nano (2014),
Pospischil et al. Nat Nano (2014)
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Lateral junction LEDs
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Vertical heterojunctions
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MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

Kang, Jun, et al, APL (2013)

Fang...Javey; PNAS (2014)

MoS:,  MoSz/WSez  WSe;

Vac
Aw (35-40 EV)
Xm (42 EV)
"N - - .. L—
Ec ecoo.
1\
Eow (1.6 eV)
Eouv (1.8 eV)
Ev

PL Intensity (a.u.)

14 16 18
Photon energy (eV)

35



2 D @ P DRI 2

009 OWO MosS,

IR B w Al A

"JJ ‘J o
°@“Ja%\i§; "j:‘* WSe,

]
. °
?

MoS,

Cheng...Duan; Nano Letters (2014)

Vertical heterojunction devices (2D/2D)  Vos: Mos/Wse:  Wse:

Xw(3.5-4.0 eV)

E .-
¢ CX-X-X-2
ES

Ecw (1.6 eV)

J— sio;

«~— silicon

back gate

SiO,

silicon

Furchi...Mller; Nano Letters (2014) 36



8 _

Vbias (V)
o
]

0.1

J (nA)

0.01

0.001

p-n n-n
1 0 -1
nm N |
J (nA)
T I I I
-80 -60 -40 -20 0
Ve (V)

1
[0.¢]

Furchi...Mdller; Nano Letters (2014)

l

back gate

MoS2  MoSz/WSez  WSe:

Aw (35-40 eV)
2eV)
I - == . L—
eceoe.
Ecw (1.6 eV)
— Si0,
«— silicon

SiOs

silicon —°

37



Nano Letters (2014)
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Vertical heterojunction devices (2D/2D)
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Vertical heterojunction devices (2D/3D) MoS,/p-Si

Diode characteristic

Device structure
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See also: Yim, Lemme, Duesberg et al, Scientific Reports (2014)
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MoS,/p-Si heterojunctions: light emission

Device structure Emitted light intensity map

contacts

patterned resist
for contacts

Lopez-Sanchez et al. ACS Nano (2014)
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MoS,/p-Si heterojunctions: light emission

CVD material

Reflected light Emitted light

Superposition
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MoS,/p-Si heterojunctions: light emission

Electroluminescence spectrum
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Quantum well EL devices

Withers et al. Nature Materials (2015)
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Quantum well EL devices
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Metal-insulator-semiconductor (MIS) EL devices
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Metal-insulator-semiconductor (MIS) EL devices

BN transporting holes
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Pulsed EL device

2D semiconductor

Normalized PL and EL

Lien et al.
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Pulsed EL device
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Recapitulation

Optoelectronics in the IT context
= |ntegrated sources, modulators and detectors for data transmission

Optical properties of TMDCs
= Strong absorbance, excitons, nesting
= Can be tuned via strain, composition, environment

Devices
= Joint density of states
= Photodetector speed limited by traps
= |Integration with waveguides for on-chip devices possible
= Lateral and vertical heterostructures for LEDs
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