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[Outline] Chapter 4: Photodetectors and LEDs

Optoelectronics in the IT context

Optical properties of TMDCs

▪ Reflectance/absorbance

▪ Band structure

▪ Excitons – band gap, binding energy

▪ Tuning

Devices

▪ Photodetectors

▪ Electroluminescent devices
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Optoelectronics and IT devices

Data load

Flexible devices

From the TV show Westworld 2



Visibility of TMDC monolayers

Benameur et al., Nanotechnology (2011)

SiO2

monolayer MoS2

1 layer
2 layers

glue
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Visibility of TMDC monolayers – contrast maps

Benameur…Kis; arxiv:1006.1048 (2010)

Benameur…Kis; Nanotechnology (2011)
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Visibility of TMDC monolayers – contrast maps

Benameur…Kis; arxiv:1006.1048 (2010)

Benameur…Kis; Nanotechnology (2011)
Li et al. Phys. Rev. B (2014)
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Band structure of 2H MoS2

Kuc…Heine; Physical Review B (2011)

Yazyev and Kis; Materials Today (2014)
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Red, blue: spin polarized subbands



Splendiani…Wang; Nano Lett. (2010)

Also later work by Mak…Heinz; PRL (2010)

bulk 4L 2L 1L

7



Photoluminescence

Mak et al., Physical Review Letters 2010
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Photoluminescence
From a CVD-grown MoS2
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Excitons

1. Light in

2. e and h 3. exciton formation

4. Light emission
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Photoluminescence

Light emission as a result of light absorption

Source: Dmitry Unuchek, PhD dissertation (2019)Source: Wikipedia
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Excitons

Single particles

Free carrier gap 𝐸𝐺

Excitons

𝐸

𝑘

ground state 1s

excited state 2s/2p

𝐸𝐺 𝑜𝑝𝑡𝑖𝑐𝑎𝑙 𝑔𝑎𝑝

𝐸𝐵~500 𝑚𝑒𝑉
Electron + hole

Excitons visible at room temperature

continuum (unbound)

𝑏𝑖𝑛𝑑𝑖𝑛𝑔 𝑒𝑛𝑒𝑟𝑔𝑦 𝐸𝐵
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Excitonic complexes

Exciton BiexcitonTrion

Neutral exciton
X0

Charged exciton
X-, X+

Exciton molecule
XX
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Electrostatic control of exciton charge in MoSe2

Ross et al, Nat Commun. (2013)
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A, B, C of excitons

Kozawa…Eda; Nature Communications (2014)
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A, B, C of excitons

Dumcenco…Kis; arXiv:1405.0129

Dumcenco…Kis; ACS Nano (2015)
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Band gap tuning with strain

(a) Johari…Shenoy; ACS Nano (2012)
(b) He…Shan; Nano Letters (2013)
(c) Conley…Bolotin; Nano Letters (2013)
(d) Castellanos-Gomez…Steele; Nano Letters (2013)

𝑑𝐸𝑔

𝑑𝜀
= −70𝑚𝑒𝑉/%

Gap tuning in 1L:
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Band gap tuning by alloying

https://www.tf.uni-kiel.de/matwis/amat/semitech_en/kap_2/backbone/r2_3_1.html

Lattice constant (Å)

For III-V and II-VI materials

▪ As long as the lattice type stays the same, composition can be tuned continuously
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https://www.tf.uni-kiel.de/matwis/amat/semitech_en/kap_2/backbone/r2_3_1.html


Band gap tuning by alloying

Li et al. J. Am. Chem. Soc. (2014)

For TMDCs

19

furnace



Band gap and exciton binding energy tuning

Dielectric constant of the environment affect the band gap 𝐸𝐺  and exciton binding 
energy 𝐸𝐵

Raja et al. Nature Communications (2017)

h-BN substrate, graphene capping
20



Vg

Vs

source Is
drain

I

Phototransistors/photodetectors

Britnell…Novoselov; Science (2013)

𝐽𝑜𝑖𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠 𝐽𝐷𝑂𝑆 𝐸 =

 = 
1

4𝜋3 ׬ 𝑑3𝑘𝛿 𝐸𝑉,𝑘 − 𝐸𝐶,𝑘 − 𝐸

 

Lopez Sanchez…Kis; Nat. Nanotech. (2013)

𝑃ℎ𝑜𝑡𝑜𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐼𝑝ℎ = 𝐼𝑙𝑖𝑔ℎ𝑡 − 𝐼𝑑𝑎𝑟𝑘  

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑖𝑡𝑦 𝑅 =
𝐼𝑝ℎ

𝑃𝑖𝑛𝑐
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Early graphene and MoS2 photodetectors

Bulk MoS2 Quadrilayer MoS2 Bilayer MoS2 Single Layer MoS2

Graphene

EG = 1.8 eV  =>  = 680nm  

Splendiani  et al , Nano Letters (2010)

Mueller  et al., Nature Photonics (2010)

ʎ= 1.55 µm  

Echtermeyer et al, Nature Com. (2011)

Zero band gap: small response
  wide spectral range
High mobility: fast response

MoS2

Direct band gap: large response
  efficient photoconversion
Low mobility: slow response
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Early graphene and MoS2 photodetectors

Graphene

ʎ= 1.55 µm  

Zero band gap: small response
  wide spectral range
High mobility: fast response

MoS2

Yin et al.; ACS Nano 6 (1) 74-80 (2011)

7.5 mA/W
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Splendiani  et al , Nano Letters (2010)

Mueller  et al., Nature Photonics (2010)

Echtermeyer et al, Nature Com. (2011)



Sensitive MoS2 photodetectors

Vg

Vs

source Is
drain

I

Lopez-Sanchez, Nature Nanotechnology (2013)
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Sensitive MoS2 photodetectors

Lopez-Sanchez, Nature Nanotechnology (2013)
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Noise-equivalent power

40

30

20

10

0

D
ra

in
C

u
rr

e
n
t
I d

s
(µ

A
)

-60 -40 -20 0 20 40

Gate Voltage Vg (V)

Laser ON

Dark state

Vds = 8 V

Photoresponsivity: 880 A/W
NEP: 1.8 × 10-15 W/Hz1/2 

Si photodiodes: 1 A/W
NEP: 3 × 10-14 W/Hz1/2

  

10
-32

10
-31

10
-30

10
-29

10
-28

10
-27

10
-26

10
-25

10
-24

10
-23

N
o
is

e
p

o
w

e
r

d
e

n
s
it
y

S
(A

2
/H

z
)

1
2 3 4 5 6

10
2 3 4 5 6

100
2 3 4 5 6

1000
Frequency (Hz)

Vds = 8 V

Vg = -70 V

Lopez-Sanchez, Nature Nanotechnology (2013)
26



Photocurrent dynamics

Lopez-Sanchez, Nature Nanotechnology (2013)

Furchi et al. Nano Lett. (2014)
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From Ch. 2: most common point defects in MoS2

Zhou et al.  Nano Letters (2013)

Conduction band

Valence band

V
S

V
S2

S2
Mo

VS

VS2

S2Mo
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Mechanisms of photoconductivity

Buscema et al. Chem. Soc. Rev. (2015) 

𝐼𝑝ℎ,𝑃𝐶 =
𝑊

𝐿
𝑉𝐷Δ𝜎

𝐼𝑝ℎ,𝑃𝐺 ≈ 𝑔𝑚Δ𝑉𝑇

𝑔𝑚 = 𝑑𝐼𝐷/𝑑𝑉𝐺

Photoconductive (PC) Photogating (PG)
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Photonic circuit integration

Gonzalez Marin et al.; npj 2D materials and applications 
(2019)
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Integrated photodetectors
Light absorption

31



[Overview] Electroluminescent devices

Adapted from Wang et al. Advanced Materials (2018)

pn junctions Quantum wells MIS/SIS structure
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Lateral junction LEDs

Ross et al. Nat Nano (2014), 

Pospischil et al. Nat Nano (2014)

𝑉𝑔1 = 𝑉𝑔2 = 8𝑉 

𝑉𝑔1 = −8𝑉, 𝑉𝑔2 = 8𝑉 
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Lateral junction LEDs

Ross et al. Nat Nano (2014)

2 µm
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Photoluminescence

Electroluminescence



Vertical heterojunctions

35

Kang, Jun, et al, APL (2013)

Fang…Javey; PNAS (2014)



Vertical heterojunction devices (2D/2D)

Lee…Kim;  Nat. Nanotechnology (2014)

Cheng…Duan;  Nano Letters (2014)

Furchi…Müller;  Nano Letters (2014)
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Vertical heterojunction devices (2D/2D)

37
Furchi…Müller;  Nano Letters (2014)
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Vertical heterojunction LEDs

Cheng…Duan;  Nano Letters (2014)
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Vertical heterojunction devices (2D/2D)

Cheng…Duan;  Nano Letters (2014)
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3 µm



Vertical heterojunction devices (2D/3D) MoS2/p-Si

Device structure

Lopez-Sanchez et al. ACS Nano (2014)

See also: Yim, Lemme, Duesberg et al, Scientific Reports (2014)
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MoS2/p-Si heterojunctions: light emission

Lopez-Sanchez et al. ACS Nano (2014)

Emitted light intensity map

5 m

Device structure
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MoS2/p-Si heterojunctions: light emission

CVD material

Superposition

10 µm10 µm 10 µm

Reflected light Emitted light
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MoS2/p-Si heterojunctions: light emission
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Lopez-Sanchez et al. ACS Nano (2014)
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Quantum well EL devices

44

10 µm

5 nm

Withers et al. Nature Materials (2015)

BN BN BN BN
GR GRWS2



Quantum well EL devices

45Withers et al. Nature Materials (2015)

BN BN BN BN

GR GRWS2

BN BN BN BN

GR GRWS2



Metal-insulator-semiconductor (MIS) EL devices

46Wang et al. Nano Letters (2017)

10 µm 10 µm



Metal-insulator-semiconductor (MIS) EL devices

47Wang et al. Nano Letters (2017)

BN blocking electrons BN transporting holes



Pulsed EL device

48Lien et al. Nature Communications (2018)

2D semiconductor



Pulsed EL device

49Lien et al. Nature Communications (2018)

2D semiconductor



Recapitulation

Optoelectronics in the IT context

▪ Integrated sources, modulators and detectors for data transmission

Optical properties of TMDCs

▪ Strong absorbance, excitons, nesting

▪ Can be tuned via strain, composition, environment

Devices

▪ Joint density of states

▪ Photodetector speed limited by traps

▪ Integration with waveguides for on-chip devices possible

▪ Lateral and vertical heterostructures for LEDs
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